Ruled Surfaces with Non-trivial Surjective Endomorphisms

نویسنده

  • NOBORU NAKAYAMA
چکیده

Let X be a non-singular ruled surface over an algebraically closed field of characteristic zero. There is a non-trivial surjective endomorphism f : X → X if and only if X is (1) a toric surface, (2) a relatively minimal elliptic ruled surface, or (3) a relatively minimal ruled surface of irregularity greater than one which turns to be the product of P and the base curve after a finite étale base change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Complex Surfaces Admitting Non-trivial Surjective Endomorphisms

Smooth compact complex surfaces admitting non-trivial surjective endomorphisms are classified up to isomorphisms. The algebraic case has been classified in [3], [19]. The following surfaces are listed in the non-algebraic case: a complex torus, a Kodaira surface, a Hopf surface with at least two curves, an Inoue surface with curves, and an Inoue surface without curves satisfying a rationality c...

متن کامل

Separable Endomorphisms of Surfaces in Positive Characteristic

The structure of non-singular projective surfaces admitting non-isomorphic surjective separable endomorphisms is studied in the positive characteristic case. The case of characteristic zero is treated in [2], [16] (cf. [3]). Many similar classification results are obtained also in this case; on the other hand, some examples peculiar to the positive characteristic are given explicitly.

متن کامل

Endomorphisms of Partially Ordered Sets

Let P be a partially ordered set. A function φ : P → P is an endomorphism of P if for every two elements x, y of P , the inequality φ(x) 6 φ(y) holds whenever x 6 y. Obviously, the identity mapping is a (trivial ) endomorphism. Here, however, we will be interested in endomorphisms with an image of size less than |P |, i.e. endomorphisms which are not automorphisms of P . We will refer to them a...

متن کامل

Strongly clean triangular matrix rings with endomorphisms

‎A ring $R$ is strongly clean provided that every element‎ ‎in $R$ is the sum of an idempotent and a unit that commutate‎. ‎Let‎ ‎$T_n(R,sigma)$ be the skew triangular matrix ring over a local‎ ‎ring $R$ where $sigma$ is an endomorphism of $R$‎. ‎We show that‎ ‎$T_2(R,sigma)$ is strongly clean if and only if for any $ain‎ ‎1+J(R)‎, ‎bin J(R)$‎, ‎$l_a-r_{sigma(b)}‎: ‎Rto R$ is surjective‎. ‎Furt...

متن کامل

An F-space with Trivial Dual and Non-trivial Compact Endomorphisms

We give an example of an F-space which has non-trivial compact endomorphisms, but does not have any non-trivial continuous linear functionals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000